The PIN domain of EXO1 recognizes poly(ADP-ribose) in DNA damage response

نویسندگان

  • Feng Zhang
  • Jiazhong Shi
  • Shih-Hsun Chen
  • Chunjing Bian
  • Xiaochun Yu
چکیده

Following DNA double-strand breaks, poly(ADP-ribose) (PAR) is quickly and heavily synthesized to mediate fast and early recruitment of a number of DNA damage response factors to the sites of DNA lesions and facilitates DNA damage repair. Here, we found that EXO1, an exonuclease for DNA damage repair, is quickly recruited to the sites of DNA damage via PAR-binding. With further dissection of the functional domains of EXO1, we report that the PIN domain of EXO1 recognizes PAR both in vitro and in vivo and the interaction between the PIN domain and PAR is sufficient for the recruitment. We also found that the R93G variant of EXO1, generated by a single nucleotide polymorphism, abolishes the interaction and the early recruitment. Moreover, our study suggests that the PAR-mediated fast recruitment of EXO1 facilities early DNA end resection, the first step of homologous recombination repair. We observed that other PIN domains could also recognize DNA damage-induced PAR. Taken together, our study demonstrates a novel class of PAR-binding module that plays an important role in DNA damage response.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The oligonucleotide/oligosaccharide-binding fold motif is a poly(ADP-ribose)-binding domain that mediates DNA damage response.

Oligonucleotide/oligosaccharide-binding (OB) fold is a ssDNA or RNA binding motif in prokaryotes and eukaryotes. Unexpectedly, we found that the OB fold of human ssDNA-binding protein 1 (hSSB1) is a poly(ADP ribose) (PAR) binding domain. hSSB1 exhibits high-affinity binding to PAR and recognizes iso-ADP ribose (ADPR), the linkage between two ADPR units. This interaction between PAR and hSSB1 me...

متن کامل

Structure and identification of ADP-ribose recognition motifs of APLF and role in the DNA damage response.

Poly(ADP-ribosyl)ation by poly(ADP-ribose) polymerases regulates the interaction of many DNA damage and repair factors with sites of DNA strand lesions. The interaction of these factors with poly(ADP-ribose) (PAR) is mediated by specific domains, including the recently identified PAR-binding zinc finger (PBZ) domain. However, the mechanism governing these interactions is unclear. To better unde...

متن کامل

PARP-2 domain requirements for DNA damage-dependent activation and localization to sites of DNA damage.

Poly(ADP-ribose) polymerase-2 (PARP-2) is one of three human PARP enzymes that are potently activated during the cellular DNA damage response (DDR). DDR-PARPs detect DNA strand breaks, leading to a dramatic increase in their catalytic production of the posttranslational modification poly(ADP-ribose) (PAR) to facilitate repair. There are limited biochemical and structural insights into the funct...

متن کامل

Effects of Poly (ADP-ribose) Polymerase Inhibition on DNA Integrity and Gene Expression in Ovarian Follicular Cells in Mice with Endotoxemia

Background: A mouse model of lipopolysaccharide (LPS)-induced inflammation was used to investigate the effect of pharmacological inhibition of nuclear enzyme PARP-1 on oocyte maturation, apoptotic and necrotic death, as well as DNA integrity of follicular cells. Also, the relative expression of cumulus genes (HAS2, COX2, and GREM1) associated with oocyte developmental competence was assessed. M...

متن کامل

Redundancy between nucleases required for homologous recombination promotes PARP inhibitor resistance in the eukaryotic model organism Dictyostelium

ADP-ribosyltransferases promote repair of DNA single strand breaks and disruption of this pathway by Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) is toxic to cells with defects in homologous recombination (HR). Here, we show that this relationship is conserved in the simple eukaryote Dictyostelium and exploit this organism to define mechanisms that drive resistance of the HR-deficient ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2015